Dai filtri anti-spam ai consigli per gli acquisti degli eCommerce, passando per il riconoscimento vocale e i motori di ricerca: il Machine Learning (o apprendimento automatico) è già ampiamente presente nella nostra vita quotidiana. Sono soprattutto i giganti del web a utilizzarlo diffusamente all’interno delle loro piattaforme, implementandolo grazie all'Intelligenza Artificiale.
Cosa si intende con il termine Machine Learning?
Per la maggior parte delle organizzazioni, in particolare quelle più piccole, le applicazioni del Machine Learning si traducono in progetti in via sperimentale, che coinvolgono pochi attori nella funzione ricerca e sviluppo. In altri casi, addirittura, il termine rimane oscuro, e non si conoscono significato e applicazioni.
Facciamo allora un po' di ordine, in quest'articolo, per comprendere al meglio significato e valore del Machine Learning, attraverso esempi, applicazioni e le varie metodologie di utilizzo.
“Si dice che un programma apprende dall’esperienza E con riferimento a alcune classi di compiti T e con misurazione della performance P, se le sue performance nel compito T, come misurato da P, migliorano con l’esperienza E.” – questa la più citata definizione di Machine Learning, dell’americano Tom M. Mitchell. Queste parole risalgono al 1997, ma il termine è stato coniato ben prima – ossia al 1959 – dallo scienziato americano Arthur Lee Samuel.
La traduzione italiana di Machine Learning (o learning machine) è apprendimento automatico. Ci si riferisce quindi a sistemi in grado di apprendere dall’esperienza, con un meccanismo simile (almeno in apparenza) a ciò che un essere umano fa dalla nascita.
Qual è la differenza tra Machine Learning e Artificial Intelligence?
Il Machine Learning rappresenta una strada per l'applicazione dell'Artificial Intelligence, un più ampio campo di ricerca che studia lo sviluppo di sistemi Hardware e Software dotati di capacità tipiche dell’essere umano
Dal punto di vista informatico, cambia radicalmente l’approccio del programmatore: se prima era necessario scrivere dettagliate righe di codice per istruire la macchina su cosa fare situazione per situazione, oggi è l’algoritmo stesso a sviluppare una sua logica e conseguentemente a compiere determinate azioni, a seconda del set di dati a disposizione.
Perché si parla solo oggi dell'apprendimento automatico? Se, come detto, il Machine Learning è stato teorizzato nel lontano 1959, perché finora è rimasto argomento poco discusso? Perché solo oggi ha la possibilità di diventare concreto, grazie alla maggiore disponibilità di due principali elementi abilitanti: dati e capacità di calcolo.
Vuoi conoscere gli ultimi trend del Machine Learning e dell'Intelligenza Artificiale?
Metodi di apprendimento automatico
Tra le principali modalità di apprendimento utilizzate in ambito Machine Learning troviamo due tipologie.
- Da un lato viene adottato l’apprendimento supervisionato, dove gli algoritmi vengono addestrati con dati già etichettati (es. input di cui si conoscono già gli output) al fine di descrivere al meglio la relazione tra dati in ingresso e dati in uscita. Con questo tipo di apprendimento si possono eseguire, per esempio, compiti basati su tecniche di classificazione (es. classificare la tipologia di un cliente in base alle informazioni sul suo conto) o regressione (es. individuare la relazione tra l’età di un utente e il suo interesse potenziale verso una determinata campagna pubblicitaria).
- A questa modalità si contrappone l’apprendimento non supervisionato, applicato su dati senza etichetta o non strutturati, in cui l’algoritmo deve analizzare i dati al fine di individuare relazioni e trovare schemi all’interno dei dati. Un esempio di apprendimento senza supervisione è il clustering (es. creare gruppi di utenti con caratteristiche simili per proporre offerte mirate).
Come funziona il Machine Learning?
All'atto pratico, un algoritmo di Machine Learning esplora i dati (a partire da un set di addestramento già etichettato o in maniera autonoma, come si vedrà nel prossimo paragrafo) per ricavarne correlazioni, pattern e quindi modelli predittivi. La logica è prettamente induttiva: la macchina osserva un determinato campione di dati e ne ricava delle regole, successivamente va a osservare altri dati e a modificare di conseguenza le proprie conoscenze.
È chiaro che più sono i dati disponibili e, soprattutto, maggiore è il numero delle fonti dati che si è in grado di integrare, maggiore sarà la capacità dell’algoritmo di fare delle previsioni esatte. Inoltre, il valore del Machine Learning si esprime ancor di più in presenza di dati destrutturati, quali immagini, testi o video, che era estremamente oneroso e poco efficace analizzare con metodologie tradizionali.
Machine Learning e Big Data
Se da un lato i Big Data sono quindi un elemento fortemente abilitante per questo tipo di progettualità, dall’altro è proprio la gestione dei Big Data a rimanere la parte più complessa del processo.
Raccogliere grandi quantità di dati, integrarli e prepararli per sviluppare progettualità innovative che non rimangano nei laboratori di Ricerca e Sviluppo ma siano scalabili ed entrino con prepotenza nei processi di business, rimane la principale sfida per il futuro e questa la condizione essenziale all’effettiva estrazione di valore da progettualità di Machine Learning.
Quali sono le tipologie di Machine Learning?
In base alle tecniche di apprendimento è, poi, possibile suddividere il Machine Learning in diverse aree: la più nota tra queste è sicuramente il Deep Learning, ma i volti del Machine Learning sono assai più sfaccettati. In questa parte della guida analizziamo sei metodologie principali.
1. Deep Learning
Il Deep Learning è l'ambito più importante del Machine Learning. Esso racchiude un insieme di tecniche che simulano i processi di apprendimento del cervello attraverso reti neurali artificiali stratificate: il risultato è la capacità di risolvere problemi di apprendimento automatico molto complessi senza la necessità di introdurre un pre-processamento dei dati, elemento solitamente indispensabile con le tradizionali tecniche di Machine Learning.
2. Online Learning
L’Online Learning – detto anche Real Time Machine Learning o Apprendimento automatico in tempo reale – è un ramo di Machine Learning che studia tecniche per problemi in cui i dati diventano disponibili uno dopo l’altro e le decisioni devono essere prese man mano che un dato diventa disponibile.
Date queste caratteristiche, si presuppone una sorta di processo a catena: all’aumentare dei dati aumenta anche l’accuratezza delle decisioni, che a loro volta influenzeranno l’acquisizione dei dati e le decisioni successive fino a raggiungerle un livello ottimale.
3. Model Prediction
La Model Prediction, o Modellazione Predittiva, include una varietà di metodologie e tecniche capaci di estrarre conoscenza da dati precedentemente acquisiti per fare previsioni su dati o eventi nel futuro. Il cuore delle tecniche di Model Prediction risiede nella capacità di apprendere modelli partendo dai dati a disposizione. Tali modelli saranno poi in grado di operare su nuovi dati fornendo predizioni su comportamenti o risultati futuri (come fare previsioni sugli ordini d’acquisto da parte dei clienti in base agli acquisti già effettuati).
4. Explainable Regression & Classification
L'Explainable Regression & Classification comprende le tecniche di Machine Learning atte a risolvere problemi di regressione (predizione di quantità ordinali) e di classificazione, tali da permettere la spiegazione dei risultati ottenuti.
5. Information Retrieval (IR)
L'Information Retrieval è l'insieme delle tecniche utilizzate per gestire la rappresentazione, la memorizzazione, l'organizzazione e l'accesso ad oggetti contenenti informazioni quali documenti, pagine web, cataloghi online e oggetti multimediali.
6. Reinforcement Learning
Il Reinforcement Learning, infine, è una tecnica di apprendimento automatico atta a risolvere problemi decisionali sequenziali mediante il conseguimento di determinati obiettivi tramite l’interazione con l'ambiente in cui opera.
Esempi e applicazioni di Machine Learning
Data la sua versatilità, il Machine Learning vede diverse applicazioni che contribuiscono alla diffusione dell’intelligenza artificiale. Applicazioni che vedono la luce in numerosi settori dove sono disponibili grandi volumi di dati dai quali si possono raccogliere informazioni utili, dai servizi finanziari al marketing, fino alla diagnosi medica o i trasporti, andando ben oltre il classico suggerimento di serie televisive da guardare su Netflix. Ecco alcuni esempi:
- riconoscimento e classificazione di immagini;
- comprensione ed elaborazione del linguaggio;
- prevenzione di frodi (attraverso l’individuazione di clienti con dati incongruenti);
- personalizzazione di campagne pubblicitarie (per offrire contenuti in base agli interessi e/o le attività degli utenti);
- ottimizzazione di siti web;
- manutenzione predittiva (es. per prevenire guasti che possano provocare tempi di fermo macchina);
- monitoraggio della qualità dei beni in fase produttiva (es. per evitare difetti di produzione);
- gestione magazzino e logistica.
Vuoi comprendere come sfruttare le applicazioni di Machine Learning e Intelligenza Artificiale nel tuo business?
- Autore
Gli Osservatori Digital Innovation del Politecnico di Milano sono un punto di riferimento qualificato sull’Innovazione Digitale in Italia.
Gli ultimi articoli di Redazione Osservatori Digital Innovation
-
Identità finanziaria, cos’è e come funziona 19 luglio 2024
-
Robotic Process Automation: cos'è e come funziona la RPA? 12 aprile 2024
Rimani aggiornato sui trend dell’Innovazione Digitale
Inserisci qui la tua email
Potrebbe interessarti
Articoli più letti